
Diploma Thesis

Stochastic Methods
for Multi-Objective Optimization

Roland Erwin Kurmann

Summer 2001

Supervisors:
Dr. Eckart Zitzler

Prof. Dr. Lothar Thiele

This report was written with LATEX 2ε, KOMA-SCRIPT, Mathematica and xfig.

Abstract

Real-world optimization problems often involve multiple, competing objectives in a
highly complex search space. Multi-objective problems distinguish themselves from
single-objective problems in that when preference information is absent no optimal
solution is clearly defined but rather a set of alternative trade-off solutions exist, which
are called the Pareto-optimal front. Generating Pareto-optimal solutions in large, com-
plex search spaces is usually intractable and cannot be solved exactly. Thus, efficient
approximation methods, that are able to deal with multiple, competing objectives and
large, complex search spaces are required.

Among the heuristic methods capable of dealing with large search spaces, the
multi-objective evolutionary algorithms (MOEA) are assumed to be one of the most
promising approaches. This is the case, because, thanks to their population-based
structure, they are capable of generating a set of trade-off solutions in one optimization
run. A lot of research has been conducted addressing the field of MOEAs and many
methods have been developed. On the contrary alternative multi-objective methods,
have not been studied in such depth and only few alternative approaches have been
proposed. This is mainly due to the fact that generating a set of trade-off solutions
seems to be more difficult using alternative optimization principles. For example local
search based techniques, such as simulated annealing and tabu search, only generate
one solution per run and a set of solutions are needed to describe the trade-off front.

The subject of this thesis was to find, classify, and compare experimentally alter-
native stochastic methods for multi-objective optimization and furthermore to relate
the performance of alternative methods to that of MOEAs using multi-objective test
problems. Emerging algorithmic improvements and combination possibilities should
be investigated and experimentally verified.

Eight alternative multi-objective approaches based on simulated annealing and
tabu search were found in literature. An approximation set of trade-off solutions is
generated by these alternative approaches by performing several runs. A classifica-
tion into three classes according to the handling of runs is proposed: independent
runs, dependent parallel runs and dependent subsequent runs. In order to compare the
approaches extensive computational experiments on the multi-objective 0/1 knapsack
problem were performed. The class of methods performing dependent parallel runs
attained the best results among the alternative methods. Alternative methods were
able to find broader trade-off fronts among solutions in comparison with those gen-
erated by MOEAs. A comparison of alternative methods with MOEAs showed that
alternative methods are able to find broader trade-off fronts. After further investiga-
tions this observation was attributed to the random walk phenomenon, where solutions
in the center of trade-off fronts are favored. Several combination types of the tabu
search optimization principle and the evolutionary algorithm were implemented and
tested, trying to overcome the random walk phenomenon. Finally, an experimental
weight-based multi-objective evolutionary algorithm, which avoided the random walk
phenomenon was developed, tested and discussed.

4

Contents

1. Introduction 7

2. Definitions 9

3. Methods 11
3.1. Single-Objective Methods . 11
3.2. Multi-Objective Adaptations . 13
3.3. Classification . 14

3.3.1. Independent Runs . 15
3.3.2. Dependent Parallel Runs . 16
3.3.3. Dependent Subsequent Runs 19

4. Comparison of Methods 21
4.1. Test Environment . 21
4.2. Results . 29

5. Combination of Methods 32
5.1. Neighborhood . 32
5.2. Random Walk Phenomenon . 35
5.3. Weight-Based Multi-Objective Evolutionary Algorithm 37

6. Conclusions and Outlook 43

5

Contents

6

1. Introduction

Many real-world optimization problems involve multiple, conflicting objectives in a
highly complex search space. Usually these problems have been modeled as single-
objective problems since many single-objective methods are available and well under-
stood. But the reduction of conflicting objectives is equivalent to taking an a priori
decision. In real-world problems there is usually only little knowledge available about
the problem structure and a decision is therefore in many cases arbitrary. Therefore, it
is desirable to postpone decisions to later stages of the optimization process. Model-
ing these real-world problems as multi-objective problems enables the possibility of a
posteriori decisions.

In a multi-objective problem the multiple, conflicting objectives are retained in the
model. Single-objective optimization problems result in single best solutions whereas
multi-objective optimization problems give rise to a set of alternative trade-off solu-
tions, the so called Pareto-optimal front. These Pareto-optimal solutions are optimal in
a wider sense that no other solutions in the search space are superior to them when all
objectives are considered. A decision can then be made on the basis of the alternative
trade-off solutions considering higher level knowledge about the real-world problem.

As a result, methods are needed which are capable of finding the Pareto-optimal
front. However, multi-objective problems which have highly complex search spaces
are hard to solve exactly, since even most single-objective counterparts are intractable.
Thus, heuristic methods are needed in order to approximate the Pareto-optimal fronts,
among which multi-objective evolutionary algorithms (MOEA) are the most common
methods. Evolutionary algorithms seem to be well suited for multi-objective prob-
lems, since they work with a population of solutions. Thanks to this they are able to
generate a set of trade-off solutions in one optimization run. During the last decade
many multi-objective evolutionary algorithms have been developed (Deb 2001), on
the contrary only few alternative multi-objective methods based on other optimization
principles, such as simulated annealing and tabu search, have been proposed (Sait and
Youssef 1999). This is the case because it is not as clear how to generate an approxima-
tion of the Pareto-optimal front in one optimization run for alternative multi-objective
methods as for MOEAs. Moreover, the supposition exists that multi-objective evolu-
tionary algorithms are more appropriate for finding approximations of Pareto-optimal
fronts than other search strategies (Fonseca and Fleming 1995).

Up to now experimental performance studies comparing different multi-objective
approaches are restricted to the field of MOEAs (Zitzler and Thiele 1999), beside a sin-
gle study (Tuyttens, Teghem, Fortemps, and Nieuwenhuyze 2000), which compares a
simulated annealing approach with an exact two phase method on a bicriteria assign-
ment problem. This situation led to the initial questions for this diploma thesis:

7

1. Introduction

• Which alternative stochastic methods for multi-objective optimization have been
proposed?

• What are the basic principles of existing alternative methods and how can the
alternative approaches be classified?

• What is the performance of the alternative methods among each other and espe-
cially compared to multi-objective evolutionary algorithms?

• Can alternative or evolutionary multi-objective methods be improved by a com-
bination of concepts?

The continuing chapters of this thesis are structured in the following manner:
Chapter 2 introduces the key concepts of multi-objective optimization and defines the
terminology used in this thesis. Chapter 3 introduces the basic principles of alternative
methods and proposes a classification of alternative methods. A comparison of the
alternative and the evolutionary multi-objective methods based on computational ex-
periments is presented in Chapter 4. Chapter 5 is devoted to combinations of methods.
Finally, conclusions and future perspectives are given in Chapter 6.

8

2. Definitions

Many real-word optimization problems in a highly complex search space can be mod-
eled as multi-objective combinatorial optimization problems.

Definition 1 A general multi-objective combinatorial problem (MOCO) with m di-
mensions (parameters) and k objectives can be stated as follows:

“min” f(x) = (f1(x), f2(x), . . . , fk(x))
s.t. x ∈ S

(2.1)

and where S is a discrete, finite set of feasible solutions (decision space), Z ⊆ Rk is
the objective space, and a set of k functions f(x): S → Z . A point x ∈ S is called
decision vector and a point z = f(x) is called objective vector.

Note that if fi is to be maximized, it is equivalent to minimize −fi.
In the case of conflicting objectives it is not possible to find a single solution that

would optimize all the objectives simultaneously. In multi-objective optimization, de-
cision vectors are regarded as optimal if their components cannot be improved without
deterioration to at least one of the other components. This is formalized by the concept
of dominance.

Definition 2 Let a, b ∈ S be arbitrary decision vectors.

1. A decision vector a is said to dominate a decision vector b (also written as
a ≺ b) if and only if

∀i ∈ {1, . . . , k} : fi(a) 6 fi(b) ∧
∃j ∈ {1, . . . , k} : fj(a) < fj(b).

(2.2)

2. A decision vector a is said to strongly dominate a decision vector b if and only
if

∀i ∈ {1, . . . , k} : fi(a) < fi(b). (2.3)

3. In this study a is said to cover b (a � b) if and only if a ≺ b or f(a) = f(b).

The definitions for a maximization problem (�,�) are analogical.

Based on the above relation, non-dominated and Pareto-optimal solutions can be de-
fined:

Definition 3 Let a ∈ S be an arbitrary decision vector.

9

2. Definitions

1. The decision vector a is said to be non-dominated regarding a set S ′ ⊆ S if and
only if there is no vector in S ′ which dominates a; formally

@a′ ∈ S′ : a′ ≺ a. (2.4)

If it is clear within the context which set S ′ is meant, it is left out.

2. The decision vector a is Pareto-optimal if and only if a is non-dominated re-
garding S. An objective vector is Pareto-optimal if the corresponding decision
vector is Pareto-optimal.

3. The set S ′ is called Pareto-optimal set if and only if

∀a′ ∈ S′ : @a ∈ S : a ≺ a′. (2.5)

The corresponding set of objective vectors is denoted as Pareto-optimal front.

Note that a Pareto-optimal set does not necessarily contain all Pareto-optimal solutions.
Just locating one non-dominated solution is very often a NP-hard task and we will

in practice have to settle for an approximation of the Pareto-optimal set.

Definition 4 A set A ⊂ S is called an approximation set regarding the Pareto-optimal
set if and only if all decision vectors a ∈ A are pairwise non-dominated.

In this study the approximation set is also referred as archive of non-dominated solu-
tions.

Weights for scalarization functions are defined as follows:

Definition 5 The λ-vector space Λ is defined as:

Λ = {λ ∈ Rk|λi ∈ [0, 1],

k
∑

i=1

λi = 1} (2.6)

A normalized vector λ ∈ Λ is called weight.

10

3. Methods

Literature research has provided eight alternative approaches for multi-objective opti-
mization based on neighborhood or local search based techniques, namely simulated
annealing and tabu search. The basic concepts of these two optimization techniques
will be introduced first, then the general adaptations of local search based techniques
will be presented and finally a classification of the found methods will be given.

3.1. Single-Objective Methods

Simulated annealing and tabu search are well known among the general single-
objective optimization methods. These so called meta-heuristics are widely used for
solving practical problems. Much research has been done and many adaptations for
specific problems were developed. Furthermore, advantages of these methods are their
good performance, their general applicability and their simplicity (Sait and Youssef
1999). Thus, it is logical that these were taken for an extension to multi-objective
problems.

Simulated annealing and tabu search are local search based methods, that means
they work on one current solution. A solution is improved in one iteration considering
neighboring solutions or short the neighborhood of that solution. The neighborhood is
problem specific and must be defined in advance of an optimization. Furthermore, the
neighborhood structure should connect the entire solution space. Neighboring solu-
tions are obtained through one or a few changes to the current solution. Optimization
proceeds by moving through the neighborhood structure. Because new neighbors may
be worse than the current solution, these meta-heuristics are capable of getting over
local optima. Finally, simulated annealing and tabu search rely on the possibility of
generating feasible initial solutions.

The basic simulated annealing algorithm (Algorithm 1) proceeds by generation of
a random neighbor per iteration. If the random neighbor is better than the current so-
lution, it is accepted as the new current solution. However if the random neighbor is
worse than the current solution, it is accepted with a probability < 1. The acceptance
probability depends on the extent of the deterioration and a parameter called temper-
ature. The temperature normally starts on a level that is high enough for the most
neighbors to be accepted and is gradually lowered to accept only smaller and smaller
deteriorations. The way the temperature is lowered is referred to as cooling scheme.

The basic tabu search algorithm (Algorithm 2) repeatedly moves from the current
solution to the best solution of its neighborhood. In order to prevent returning to

1Note, an improvement is always accepted with probability 1.
2The function argmin returns the “argument of the minimum”. Here, the solution y with smallest

objective function value f among the non-tabu neighbors is returned.

11

3. Methods

Algorithm 1 Basic simulated annealing
x := initialSolution();
bestX := x;
T := initialT emp();
repeat

select a random solution y ∈ neighborhood(x);
if P (x, y, T) > random[0, 1] then

x := y;
end if
if f(x) < f(bestX) then

bestX := x;
end if
update(T);

until stop condition is fulfilled

P (x, y, T)1 := min
{

1, e
f(x)−f(y)

T

}

Algorithm 2 Basic tabu search
x := initialSolution();
bestX := x;
tabulist := ∅;
repeat

y := argmin2{f(y)|y ∈ neighborhood(x) ∧ move(x, y) /∈ tabulist};
if length(tabulist) > maxTabuListLength then

remove the oldest element from the tabulist;
end if
x := y;
add move(y, x) as the newest element to the tabulist;
if f(x) < f(bestX) then

bestX := x;
end if

until stop condition is fulfilled

12

3.2. Multi-Objective Adaptations

already visited solutions, the reverse move is declared tabu. Moves that have been
declared tabu are kept in a tabu list. The tabu moves are disregarded for a period of
neighborhood moves, as defined by the length of the tabu list.

3.2. Multi-Objective Adaptations

In the literature various ways to adapt a single-objective meta-heuristic have been sug-
gested. Several researchers have proposed adaptations and presented multi-objective
algorithms based on simulated annealing (Serafini 1994; Ulungu, Teghem, Fortemps,
and Tuyttens 1999; Engrand 1997; Czyzak and Jaszkiewicz 1998; Suppapitnarm, Sef-
fen, Parks, and Clarkson 2000) and tabu search (Hansen 1997c; Gandibleux, Mez-
daoui, and Fréville 1997). Most of the above work was developed independently and
has similar or redundant parts. This section mentions general extensions for local
search based methods, especially for simulated annealing and tabu search as reported
in the above publications. In local search based methods solutions have to be compared
with each other respecting the objective function. Since there are multiple objectives
in a multi-objective environment, adaptations must at least address that.

A multi-objective simulated annealing method must adapt the probability for ac-
cepting neighboring solutions, denoted as acceptance probability. In the single-objec-
tive environment only two cases exist, the new solution is better or worse. By compar-
ing two objective vectors x,y ∈ S in MOCO three cases arise:

• y dominates or is equal to x,

• y is dominated by x, or

• y is non-dominated with respect to x.

The first two cases can easily be reduced to the single-objective case. The third case
can be seen either as a deterioration (weak acceptance) or as an improvement (strong
acceptance). Several acceptance probabilities have been proposed (Serafini 1994;
Ulungu et al. 1999; Engrand 1997; Suppapitnarm et al. 2000). Two characteristic
acceptance probabilities are presented below.

First we discuss a weighted sum approach, where the differences on each objective
are accumulated. The probability is defined by the expression:

PWS(x,y, T,λ) := min
{

1, e
� k

j=1 λj(fj(�)−fj(�))/T
}

(3.1)

where T is the temperature and λ is the weight vector. This probability represents the
family of probabilities, where the objectives are aggregated in advance by a certain
function F (f(x)). Such an aggregation reduces the multiple objectives to a single
one, thus all vectors can be compared, even the non-dominated. Therefore, strong and
weak acceptance coincide.

A strong acceptance probability, inspired by the Tchebycheff metric with the ref-
erence vector x is defined as follows:

PST (x,y, T,λ) := min

{

1, min
j∈{1,...,k}

{

eλj(fj(�)−fj(�))/T
}

}

(3.2)

13

3. Methods

Algorithm 3 updateArchiv(x, A)
if x is non-dominated by all elements of A then

for all dominated a ∈ A by x do
A := A\a;

end for
A := A ∪ {x};

end if

This probability is a member of the Pareto-based family. A weak acceptance results, if
the inner min() is replaced by max().

In order to find a “best” neighbor in a multi-objective tabu search algorithm, neigh-
bors must be compared. The common approach is scalarization of objectives. Popular
methods are the weighted sum

λ · f(x) (3.3)

or the weighted Tchebycheff metric

‖z − zideal‖ �∞ = max
i∈{1,...,k}

{λi|zi − zideal
i |} (3.4)

where zideal ∈ Rk is the ideal objective vector. The components z ideal
i are obtained

by minimizing each of the objective functions individually. Other functions than the
weighted sum are used, because the weakness of weighting methods is that not all
Pareto-optimal solutions can be found unless the problem is convex (Steuer 1986).
Weighted sums in conjunction with multi-objective tabu search do not seem to be a
practical problem, since every iteration a new sum is calculated.

Above adaptations contain weights, which may influence or even steer the search
process. Thus, weights must be set carefully. Different weight setting mechanisms are
presented in literature, these will be discussed in Section 3.3.

Since in a multi-objective environment not only one single solution exists, but a set
of solutions, these solutions have to be stored. The common approach is to maintain
an archive with a simple update procedure (Algorithm 3). Every new generated point
is checked against the archive for non-dominance. If the new vector is non-dominated,
it is inserted and all dominated vectors will be removed. This simple update procedure
may run into problems, since there exist a huge number of non-dominated points. After
a certain problem size, it is impossible to store all generated solutions. An appropriate
reduction mechanism must be applied.

Many improvements and extensions for the single-objective methods have been
proposed. In general these improvements can also be applied to multi-objective meth-
ods.

3.3. Classification

This section aims to classify the eight multi-objective approaches. A survey and clas-
sification for a wider scope of MOCO methods, especially exact procedures and dedi-
cated heuristics can be found in (Ehrgott and Gandibleux 2000). Main properties and
theoretical results of MOCO problems are also discussed.

14

3.3. Classification

Runs

DependentIndependent

SubsequentParallel

Figure 3.1.: Classification Schema

The local search based methods work on a single solution, the current solution.
The current solution is modified in every iteration. A single start of such a procedure
can only approximate a small region of the Pareto-optimal front. Several runs with
different parameters (e.g. weights), starting from different initial solutions are neces-
sary. Each run has its own current solution, adopted form the MOEA terminology,
these current solutions will be denoted as population. Runs can be started indepen-
dently, as several single-objective methods and the generated objective vectors can be
merged to one trade-off front. Ideas have been developed where runs interact with each
other. Interacting runs optimize the population simultaneously in each iteration while
information is shared, whereas the approaches differ through the type of interaction.

We believe that the interaction of runs is an appropriate classification criterion.
Then, the reported methods can be divided, as shown in Figure 3.1, into three classes:
independent runs, dependent parallel runs and dependent subsequent runs. Indepen-
dent runs do not have any interaction among each other. Dependent runs are distin-
guished by their type of interaction. Dependent parallel runs exchange information
iteration by iteration, e.g. the current representation on the non-dominated front. Sub-
sequent runs perform one run and restart using available information, e.g. the decision
vectors from the archive. Each class with its methods is separately discussed in below
sections.

3.3.1. Independent Runs

This class contains methods whose authors have mainly concentrated on other aspects
than the interaction of runs, namely on the basic principles of adaptations as described
in Section 3.2.

The general algorithm for independent runs is summarized in Algorithm 4. Ini-
tially, the number of runs must be determined. Starting from an empty archive, each
run is started either in parallel or subsequently and optimizes its current solution. A
run sets the scalarization weight λ at the beginning of a run. An optimization run is
then started from a feasible initial solution. The current solution xt−1 is iteratively im-
proved by the procedure improveSolution() either using simulated annealing or tabu
search techniques. The new obtained decision vector xt is then processed by Algo-
rithm 3. Weights may be periodically modified either using the information available
during a single run which may be in our case the improvement of the objective vector
from xt−1 to xt or just randomly. This information may help guide the search through
a better setting of λ. At the end of the runs, all archives Aj are merged.

15

3. Methods

Algorithm 4 Independent Runs
r := numberOfRuns();
for all j ∈ {1, . . . , r} do

t := 0;
λ := initialWeight();
x0 := initialSolution(S);
Aj := ∅;
repeat

t := t + 1;
xt := improveSolution(xt−1,λ);
Aj := updateArchive(xt, Aj);
λ := updateWeight(λ,xt,xt−1, t);

until stop condition is fulfilled
end for
A := mergeArchives(A1, . . . , Ar);

Serafini (1994), Ulungu et al. (1999) and Engrand (1997) independently started
the adaptation of simulated annealing for multi-objective problems. They investigated
adaptation techniques as described in Section 3.2. Engrand (1997) proposes a “return
to base” option where the current solution is periodically replaced by a member of the
archive Aj , aiming to exploit different regions of the Pareto-optimal front. Suppapitn-
arm et al. (2000) enhance Engrand’s algorithm by implementing improvements known
from single-objective simulated annealing. Suppapitnarm et al. (2000) also propose
an archive-based solution acceptance where a solution y is always accepted if y is
non-dominated regarding archive Ai or otherwise accepted with a probability < 1.

Gandibleux et al. (1997) propose a single run multi-objective tabu search algorithm
performing weight updates. They suggest a modification of λ according to the level
of improvement of fi(xt) compared to fi(xt−1) in order to diversify the search to
directions of “weak” improvements. In contrary to the general algorithm, not only
the “best” neighboring solution y is considered for insertion into the archive but also
further members of the neighborhood. The m next “best” neighbors are inserted where
m is depending on the number of dominated solutions of Ai by y. Gandibleux et al.
(1997) innovates, additionally to the tabu list for moves, a weight update tabu list for
each weight component λi in order to avoid too rapid changes of the same weight
component λi. Since this method is only verified on a hand calculation example, it
is not clear how good the approximation of the Pareto-optimal front for real-world
problems actually is.

3.3.2. Dependent Parallel Runs

Czyzak and Jaszkiewicz (1998) proposed a simulated annealing algorithm using a pop-
ulation of solutions which interact at each iteration. Their approach is an adaptation of
the population concept from evolutionary algorithms for multi-objective local search
based methods. Weights are set through interaction. Population members influence
each other aiming to spread the search to different regions of the Pareto-optimal front.
The goal is to set the weights so that the points move away from the other population

16

3.3. Classification

Algorithm 5 Dependent Parallel Runs
t := 0;
X0 := initialPopulation(S);
λ := initialWeight();
A := ∅;
repeat

Xt+1 := ∅;
for all x ∈ Xt do

λ := updateWeight(Xt,x,λ);
y := improveSolution(x,λ);
A := updateArchive(y, A);
Xt+1 := Xt+1 ∪ {y};

end for
Xt+1 := changePopulation(Xt+1, t);
t := t + 1;

until stop conditions are fulfilled

members. Hansen (1998) has applied the population idea to tabu search.
The general principle is stated in Algorithm 5. Initially, a population of feasi-

ble initial decision vectors is generated by the procedure initialPopulation(). The
weight λ is initialized as well, e.g. at random. Then the members of the population
are “simultaneously” optimized in each iteration step. Two types of interaction ex-
ist. The first interaction of runs performs the procedure updateWeight() in order to
determine the search direction for the current decision vector x ∈ Xt, the position
of f(x) in the objective space is compared with the position of the other population
members. The weight vector λ is then modified using this information. The procedure
improveSolution() optimizes the solution x either using simulated annealing or tabu
search techniques. Afterwards, the archive is updated with the newly obtained vector
y using Algorithm 3. A new population Xt+1 is formed with the improved solutions y.
The second type of interaction is performed by the procedure changePopulation().
The population is periodically modified in order to control the search. A possible
modification is doubling or deleting of members regarding each other’s dominance.

Czyzak and Jaszkiewicz (1998) and Hansen (1998) suggest different procedures
for updateWeight(). The procedure updateWeight() of Czyzak and Jaszkiewicz
(1998) determines the closest solution x′ ∈ Xt in the objective space to x, which is
non-dominated with respect to x. These two solutions are compared on each objective
fi and the weight component λj is changed:

λj :=

{

βλj if fj(x) 6 fj(x
′)

λj/β if fj(x) > fj(x
′)

(3.5)

where β < 1 is a constant close to one (e.g. 0.95) and λ is normalized after the
modification. This weight update aims to lead x away from the closest neighbor x ′.
Further search is intensified in the direction where x is comparatively better than x ′.

The algorithm of Hansen (1998) determines a new search direction for each popu-
lation member x′ according to the population of solutions Xt. Instead of only consider-
ing the closest member of the population, all non-dominated members are considered.

17

3. Methods

B

f

f

C
D

a+cc

a
A

1

2

Figure 3.2.: Population-based direction setting for a maximization problem, where A,
B, C and D are population members in the objective space and a and c are
proximity values.

Algorithm 6 updateWeight(Xt ,x,λ): Population-based weight setting
λ := 0;
for all x′ ∈ Xt which are non-dominated by x do

w := g(d(f (x),f (x′)));
for all objectives fj where fj(x) > fj(x

′) do
λj := λj + w;

end for
end for
if λ = 0 then

λ := randomWeight();
end if
λ := normalize(λ);

The updateWeight() procedure for a maximization problem is given in Algorithm
6 where d() is a distance function in the objective space, e.g. the Manhattan distance
norm d(z, z ′) =

∑k
j=1 |zj − z′j | and g() is a proximity function, e.g. g(d) = 1/d.

The proximity value w is calculated for all non-dominated population members. A
comparison on each objective is performed, comparatively better objective directions
are maintained. The closer a point, the more influence it gains. An example for a max-
imization problem is shown in Figure 3.2. For the procedure changePopulation()
Hansen proposes the copying of a member, where a random member is doubled, while
another random member is deleted. The hope is that new search directions can be
found. He also describes a more complex changePopulation() procedure where the
population size is dynamically changed using a certain domination degree among the
population members. This can be used if the population size cannot be determined in
advance. Additional publications about multi-objective optimization using tabu search
are available. Hansen (1997a) describes a modified version suggesting the use of hash
functions in order to yield performance improvements. The effect of different scalar-
ization functions is studied in (Hansen 2000).

18

3.3. Classification

Algorithm 7 Dependent Subsequent Runs (CHESS)
A := updateArchive(initialSolution(S), ∅);
repeat

D(A,x) := createObjectiveFunction(A); (*single objective*)
x := call singleObjectiveMethod(D(), A);
A := updateArchive(x, A);

until stop conditions are fulfilled

A few applications of the above methods are reported in literature. Hansen (1997b)
adapts his method for the multi-objective knapsack problem. Jaszkiewicz (1997) uses
the parallel simulated annealing method for a multi-objective nurse scheduling prob-
lem. Czyzak and Jaszkiewicz (1997) apply parallel simulated annealing to complex
manufacturing systems. Viana and Sousa (2000) apply both methods presented above
to a multi-objective resource constraint project scheduling problem.

3.3.3. Dependent Subsequent Runs

In the third class of methods, several runs are performed subsequently. Information
from previous runs, e.g. the archive, is used to control the search. Borges (2000)
presented the method CHESS (Changing Horizon Efficient Set Search) which subse-
quently calls single-objective procedures using a specific objective function providing
a Pareto-based objective function. Since to our knowledge CHESS is the only repre-
sentative of this class, this algorithm will be described here.

CHESS, described in Algorithm 7, does not extend a single-objective method, but
it makes use of them. A single-objective method is called providing a certain objective
function D() which relates a point x with the archive A:

D(A,x) =

{

non-negative, if x is dominated by a point in A,
negative, otherwise.

(3.6)

The single-objective method minimizes objective D(). Thus, obtaining negative values
is equivalent to finding non-dominated points. The objective function D() can be seen
as a distance measure of the point x to the archive A. Many candidates for D() are
possible, a relationship of x ∈ S with A based on the dominance concept is suggested
in the publication. First, the distance of two vectors x ∈ S and a ∈ A is defined:

d(a,x) = min
i∈{1,...,k}

(fi(x) − fi(a)) (3.7)

According to the value d takes, three cases can be distinguished:

i. d(a,x) > 0 ⇐⇒ a strongly dominates x.

ii. d(a,x) < 0 ⇐⇒ a does not dominate x.

iii. d(a,x) = 0 ⇐⇒ a = x or a weakly dominates x.

(3.8)

The distance of a point x ∈ S to the archive A follows:

D(A,x) = max�

∈A
(d(a,x)) = max�

∈A

(

min
i∈{1,...,k}

(fi(x) − fi(a))

)

(3.9)

19

3. Methods

where

i. D(A,x) > 0 ⇐⇒ x is dominated.

ii. D(A,x) < 0 ⇐⇒ x is non-dominated.

iii. D(A,x) = 0 ⇐⇒ x is weakly-dominated or belongs to A.

(3.10)

Since A is updated during the optimization process, D() differs for subsequent calls.
Note, the objective function D() does not incorporate any weights in contrary to the
scalarization functions used by the approaches of the classes of independent and par-
allel runs.

The method CHESS is inspired by a simple idea. Assuming an exact single-
objective method, subsequent single-objective calls using D() return negative values,
as long as non-dominated points are available. If a positive value is returned, no more
non-dominated points are available and the entire Pareto-optimal front has been found,
thus the method can be stopped.

20

4. Comparison of Methods

Alternative methods and multi-objective evolutionary algorithms will be compared
with each other in this chapter. The comparison of the methods is based on experi-
ments on multi-objective 0/1 knapsack problems. The Table 4.1 gives a survey of the
implemented and tested methods. Concerning the alternative methods, representatives
of each class as given in Section 3.3 were chosen. SPEA (Zitzler and Thiele 1999)
and SPEA2 (Zitzler, Laumanns, and Thiele 2001) were taken as representatives for
the multi-objective evolutionary algorithms, because a good performance is reported
in the publications and their implementation was available for this study. Note, the
method CHESS was only used in conjunction with tabu search, since Borges (2000)
reported bad results for simulated annealing. This comparison was done in analogy to
the study of (Zitzler and Thiele 1999); the same test problems and the same metrics
were used.

Class Optimization Principle Method Name

Independent Runs Tabu Search ITS
Simulated Annealing ISA

Dependent Parallel Runs Tabu Search PTS
Simulated Annealing PSA1

Dependent Subsequent Runs Tabu Search CHESS

Multi-Objective Evolutionary Algorithms SPEA
SPEA2

Table 4.1.: Methods for Comparison

4.1. Test Environment

Test Problem

The multi-objective 0/1 knapsack problem as defined in (Zitzler and Thiele 1999) was
chosen as MOCO test problem. This problem is an extension of the single-objective
0/1 knapsack problem. The single-objective problem consists of a set of items, weight
and profit associated with each item, and an upper bound for the capacity of the knap-
sack. The goal is to find a subset of items which maximize the profit sum while not
exceeding the capacity. A multi-objective problem results if k knapsacks are taken.

1PSA stands for parallel simulated annealing and not for Pareto Simulated Annealing (Czyzak and
Jaszkiewicz 1998). The implementation differs as well.

21

4. Comparison of Methods

The multi-objective 0/1 knapsack problem with m items and k objectives is formally
defined as

max fi(x) =
m

∑

j=1

pijxj i = 1, . . . , k

s.t.
m

∑

j=1

wijxj 6 ci

(4.1)

where x = (x1, . . . , xm) ∈ {0, 1}m is the decision vector, xj = 1 if and only if item
j is selected, pij is the profit of item j according to knapsack i, wij is the weight of
item j according to knapsack i and ci is the capacity of knapsack i.

Note, a slightly different multi-objective knapsack problem is defined in (Hansen
1997b; Czyzak and Jaszkiewicz 1998; Ulungu et al. 1999). They use one knapsack
with k profit objectives.

The data set of (Zitzler and Thiele 1999) was used for the computational experi-
ments. The following three test problems were used: 750 items with 2, 3 and 4 ob-
jectives. Uncorrelated profits and weights were chosen, where pij and wij are random
integers in the interval [10, 100]. The capacity of knapsack i was set to

ci =
1

2

m
∑

j=1

wij . (4.2)

Implementation

The alternative methods of Table 4.1 were implemented for the multi-objective 0/1
knapsack problem. The representatives of the class of independent runs were imple-
mented as shown in Algorithm 4 where no weight updates (updateWeight()) are per-
formed. Thus, the weight λ is not changed during any run. The methods of the class
of dependent parallel runs were implemented as given in Algorithm 5. New weights
are calculated in every iteration by Algorithm 6. The procedure changePopulation()
was not used in experiments, thus the population size remained constant during opti-
mization. CHESS has been implemented as shown in Algorithm 7 using the distance
function D() as given in Equation 3.9.

An archive as described in Algorithm 3 is maintained by all methods. The proce-
dure updateArchive() is called for every new generated solution by the subroutine
improveSolution(). CHESS additionally calls the procedure updateArchive() after
every single-objective iteration.

The following neighborhood function for the multi-objective 0/1 knapsack prob-
lem was used:

1. Repeatedly remove one randomly selected (non-tabu) item until there is free
space for all items outside, regarding all knapsacks.

2. Repeatedly insert one randomly non-selected (non-tabu) item until no more
items can be inserted, regarding all knapsacks.

“Non-tabu” refers to the context of tabu search.
An initial solution was built by a modified version of the above neighborhood

function:

22

4.1. Test Environment

1. Empty all knapsacks.

2. Repeatedly insert one randomly non-selected item until no more items can be
inserted, regarding all knapsacks.

The “best” neighbor in tabu search is evaluated by the weighted sum as shown
in Equation 3.3. Every run maintains its own tabu list, where the first item, which
is inserted into the knapsack by the neighborhood function, is set tabu. This item
cannot be removed the next l iterations, where l is the length of the tabu list. Thus,
cycling to equal knapsack fillings are prevented for the next l iterations. As acceptance
probability for simulated annealing the strong Tchebycheff-based probability as given
in Equation 3.2 was chosen. The temperature T is annealed after every Astep iterations
using T := αT .

In order to obtain as general results for MOCO as possible, no special improve-
ments for the multi-objective knapsack problem were considered.

Existing implementations of SPEA and SPEA2 for the multi-objective knapsack
problem were used. Their implementation is described in (Zitzler and Thiele 1999;
Zitzler et al. 2001). As an exception, the initial populations are not created as described
in the papers, but with the above stated procedure, in order to enable a fair comparison,
having equal start conditions for all methods.

Performance Metrics

The results of computational experiments will be compared using the S and C metrics
of (Zitzler and Thiele 1999). These metrics are scaling-independent, thus the objec-
tives do not have to be scaled for measuring. The metrics are cited below.

Definition 6 (Size of the space covered) Let X ′ = (x1, . . . ,xl) ⊆ S be a set of l
decision vectors. The function S(X ′) gives the volume enclosed by the union of the
polytopes p1, . . . , pl, where each pi is formed by the intersections of the following
hyperplanes arising out of xi, along with the axes: for each axis in the objective
space, there exists a hyperplane perpendicular to the axis and passing through the
point (f1(xi), . . . , fk(xi)). In the two-dimensional case, each pi represents a rectan-
gle defined by the points (0, 0) and (f1(xi), f2(xi)).

Definition 7 (Coverage of two sets) Let X ′, X ′′ ⊆ S be two sets of decision vectors.
The function C maps the ordered pair (X ′, X ′′) to the interval [0, 1]:

C(X ′, X ′′) :=
|{a′′ ∈ X ′′;∃a′ ∈ X ′ : a′ � a′′}|

|X ′′|
(4.3)

The value C(X ′, X ′′) = 1 means that all points in X ′′ are dominated by or equal to
points in X ′. The opposite, C(X ′, X ′′) = 0, represents the situation when none of the
points in X ′′ are covered by the set X ′. Note that both C(X ′, X ′′) and C(X ′′, X ′) have
to be considered, since C(X ′, X ′′) is not necessarily equal to C(X ′′, X ′) (e.g., if X ′

dominates X ′′ then C(X ′, X ′′) = 1 and C(X ′′, X ′) = 0).
The size of the covered space obtained by metric S is also referred to as area in

this study.

23

4. Comparison of Methods

Methodology

In order to compare the methods, a common stop condition had to be defined. We
decided to stop the optimization process after a certain number of objective function
f evaluations. The advantage of this condition is the implementation independence.
Moreover, the evaluation of the objective functions may be the most “expensive” oper-
ation in real-world problems and thus the most important regarding the run-time. The
chosen numbers of evaluations for the different test problems are shown in Table 4.2:

2 Objectives 3 Objectives 4 Objectives
Evaluations 500000 1000000 1500000

Table 4.2.: The number of objective function f evaluations for the 750 item knapsack
problems

Per test problem 30 repetitions of each method were considered, where the random
number seed was controlled. Therefore the initial population was the same in every
repetition i, when an equal population size was used by the methods.

The archives obtained by the methods were compared using the S and C metric.
Each repetition was measured by the metric S , a sample of 30 S values was obtained
per method. For each ordered pair of methods there was a sample of 30 C values per
test problem according to the 30 repetitions.

In order to visualize the distributions of the samples, box plots are used. A box
plot used in this study consists of two boxes, an inner and an outer one. The inner box
summarizes 50% of the data and the outer summarizes the standard deviation of the
distribution. The upper and lower ends of the inner box are the 75% and 25% quantiles,
while the thick line within the boxes encodes the median. The upper and lower ends of
the outer box are the arithmetic mean ± standard deviation. The scattered dots display
the sample of values.

Parameter Settings

Since the methods, which are considered for the comparison, are quite different, the
parameters had to be chosen with care in order to obtain sound results. Many pre-
liminary tests on the two objective knapsack problem applying above methodology
were performed in order to find adequate parameter settings. The parameter values
which achieved the best results were chosen. Note, there is a trade-off for the tabu
search based methods among the parameters the number of runs, neighborhood size
and number of iterations. Trade-off parameters were examined by doubling and halv-
ing. The simulated annealing parameters of (Czyzak and Jaszkiewicz 1998) were
taken as reference and adjusted to our knapsack problem instances. The parameters
for the multi-objective evolutionary algorithms were taken from (Zitzler, Laumanns,
and Thiele 2001). The parameters shown in Table 4.3 and 4.4 were chosen for the
comparison of methods. The parameters marked with an asterisk (*) were preliminary
tested.

24

4.1. Test Environment

Optimization Principle Parameter Value

Tabu Search Neighborhood size 400*
Tabulist Length l 3*

Simulated Annealing Initial temperature T0 120
Initial acceptance probability P0 >0.8
Cooling factor α 0.9
Annealing schedule Astep 2500

Multi-Objective Crossover rate pc (one-point) 0.8
Evolutionary Algorithms Mutation rate pm (per bit) 0.006

Tournament size 2

Table 4.3.: Optimization principle specific parameters

Objectives Parameter Value

Independent & Dependent Parallel Runs

2 Runs/Population Size 5*
Iterations 250*

3 Runs/Population Size 10
Iterations 250

4 Runs/Population Size 15
Iterations 250

Dependent Subsequent Runs

2 Single-Objective Iterations 800*
Runs 1.6*

3 Single-Objective Iterations 800
Runs 3.1

4 Single-Objective Iterations 800
Runs 6.3

Multi-Objective Evolutionary Algorithms

2 Population 250
Elitist Archive 250
Generations 2000

3 Population 500
Elitist Archive 500
Generations 2000

4 Population 750
Elitist Archive 750
Generations 2000

Table 4.4.: Problem dependent parameters per class

25

4. Comparison of Methods

2 Objective Knapsack Problem

SPEA SPEA2 ISA ITS PSA PTS CHESS

7.8· 108

8· 108

8.2· 108

8.4· 108

8.6· 108

A
re

a

3 Objective Knapsack Problem

SPEA SPEA2 ISA ITS PSA PTS CHESS

2.2· 1013

2.3· 1013

2.4· 1013

2.5· 1013

A
re

a

4 Objective Knapsack Problem

SPEA SPEA2 ISA ITS PSA PTS CHESS

5· 1017

5.2· 1017

5.4· 1017

5.6· 1017

5.8· 1017

6· 1017

6.2· 1017

A
re

a

Figure 4.1.: Size of dominated space: Distributions of S values

26

4.1. Test Environment

CHESS

PTS

PSA

ITS

ISA

SPEA2

SPEA

Figure 4.2.: Box plots based on the C metric. Each rectangle contains three box plots
representing the distribution of the C values. The three box plots are re-
lated to the 2, 3 and 4 objective knapsack problems.

27

4. Comparison of Methods

24000 25000 26000 27000 28000 29000

24000

25000

26000

27000

28000

29000

SPEA2 SPEA ISA ITS PSA PTS CHESS

Figure 4.3.: Trade-off fronts for a two objective knapsack problem instance.

28

4.2. Results

0 100000 200000 300000 400000 500000
4· 108

5· 108

6· 108

7· 108

8· 108

A
re

a

SPEA ISA ITS PSA PTS CHESS

Figure 4.4.: In the graphs the development of the S metric median (area) achieved by
the methods3 is plotted over the number of objective function f evalua-
tions. The approximation set snapshots were taken every 10000th evalua-
tion of the objective function f .

4.2. Results

Comparison results concerning the metric S (size of the covered space, also referred
to as area) are depicted in Figure 4.1 and 4.4. The final distributions of S are shown
in Figure 4.1, whereas the dynamic behavior over time of the methods is plotted in
Figure 4.4. Figure 4.2 gives the direct comparison results of the C metric. In Figure
4.3 the trade-off fronts obtained by the methods of one repetition are shown in order to
get a visual impression of the differences among the trade-off fronts generated by the
methods. To show the differences clearly, a characteristic repetition has been chosen.
Generally, visual inspections of non-dominated fronts have proved to be helpful for
interpreting results obtained by the metrics. The following discussion of results is
splitted into four parts, the first compares results of the alternative methods, the second
describes the outcome of additional investigating experiments concerning alternative
methods, the third is devoted to a comparison of the simulated annealing and the tabu
search optimization principles and finally, the fourth discusses the experimental results
obtained by the multi-objective evolutionary algorithms in comparison with those of
the alternative methods.

Starting with the alternative approaches, the methods of the classes of dependent
parallel runs and independent runs show similar results, where those of the CHESS
method performing subsequent runs are inferior. Concerning the classes of indepen-
dent and dependent parallel runs, the methods of the class of parallel runs achieve
better results than those of independent runs, firstly, a better convergence is shown in
Figure 4.1 and secondly, a bigger area is reported in Figure 4.2. Conspicuous is the

3SPEA2 could not be included in the comparison, because the output format of SPEA2 was not com-
patible with that of the other methods.

29

4. Comparison of Methods

variance of the S metric distributions for the methods ISA and ITS, shown in Figure
4.1. The higher variance of these methods, which execute independent runs, can be
attributed to the random weights which are initially set and not changed during the
whole optimization. The performance comparison over time (cf. Figure 4.4) shows a
similar convergence behavior for the methods of the classes of dependent parallel and
independent runs, beside the differences already seen by the final distributions of S
and C metrics. Since the methods of the class of dependent parallel runs yield a better
result by metric S than the methods of the class of independent runs having random
directions, it can be concluded that the population-based weight setting (Algorithm 6)
is able to direct the population members to distinct regions of the Pareto-optimal front.
Besides this the methods of the class of dependent parallel runs also achieve a broader
trade-off front for the two objective case than the methods of the class of independent
runs, as can be seen in Figure 4.3. A comparison of CHESS, the representative of the
class of subsequent runs, shows that the generated trade-off fronts are not as broad as
those obtained by the other methods (cf. Figures 4.3 and 4.1). Metric C also reveals
the worst convergence to the Pareto-optimal front for CHESS. A different dynamic
behavior of CHESS compared with the other methods is shown in Figure 4.4, CHESS
converges fast in an early phase, but stagnates soon afterwards. Finally, a visual in-
spection of the approximation sets shows (cf. Figure 4.3) that methods of independent
and dependent parallel runs pursue directions to separate regions of the non-dominated
front, i.e., holes between these regions are recognizable. It can be summarized, that
the methods of the class of dependent parallel runs show the best results among the
alternative methods.

Additional experiments on the two objective knapsack problem investigating adap-
tive weight setting and alleviation of holes were performed. First, a modified version
of the method ITS, denoted as ITSDIR, with preset uniform weights, representing
optimal optimization directions was executed in order to verify the population-based
weight setting of PTS method. The results obtained by ITSDIR (cf. Figure 5.3 in Sec-
tion 5.2) were equivalent to those obtained by the method PTS, thus population-based
weight setting is capable of finding the optimal weights for the two objective knapsack
problem. Secondly, the number of runs performed by methods ITS and PTS were var-
ied in order to remedy the holes. Generally, it can be said, the bigger the population,
the smaller the holes. However, the convergence gets worse, since there is a trade-off
between the population size and the number of iterations, while the number of objec-
tive function f evaluations remains fixed. Thirdly, another way for the alleviation of
holes in method ITS was considered, the periodicial resetting of the weights, where
every time a new random weight was set. The following effects with periodically
changed weight vectors could be seen, the more frequent the weights were modified,
(i) the smaller the holes, and additionally (ii) the narrower the entire trade-off front be-
came. The Figure 5.3 in Section 5.2 shows the most extreme case of weight resetting,
where a new random weight is set every iteration (method ITS1).

A comparison of the underlying optimization principles shows, according to the
metrics S and C, that the tabu search based methods outperform the simulated anneal-
ing based methods. First, the methods using the tabu search optimization technique
achieve a larger area on the 2, 3 and 4 objective knapsack problems and secondly,
the tabu search based methods are able to cover the simulated annealing based meth-
ods with at least 50% besides the exception of the methods ITS and PSA in the 2

30

4.2. Results

objective case, whereas the coverage rates of the simulated annealing based methods
mostly remain at 0%. A different convergence behavior to the Pareto-optimal front
for the methods based on two different optimization principles is also revealed in Fig-
ure 4.4. Overall, the convergence velocity of the simulated annealing based methods
is significantly slower than that of the tabu search based methods. Additionally, an
inspection of Figure 4.3 shows that methods using simulated annealing generate less
non-dominated points in a single run than the tabu search. Finally, another observation
is that the population-based weight setting, in conjunction with simulated annealing, is
less effective in higher objective dimensions than with tabu search, according to metric
S .

The multi-objective evolutionary algorithms SPEA and SPEA2 show a good con-
vergence to the Pareto-optimal front for the two objective knapsack problem (cf. Fig-
ures 4.2 and 4.3), whereas the non-dominated fronts are narrower than those of the
alternative methods PTS and PSA. On the two objective knapsack problem no trade-
off fronts found by the other methods are able to dominate or cover solutions found
by SPEA or SPEA2. However, this good convergence, compared to that of the other
tested methods cannot be retained in higher objective dimensions. Fronts produced by
SPEA2 (similar for SPEA) for four objectives are covered with almost 50% by ITS and
PTS according to metric C, whereas no solution generated by SPEA2 is able to cover
any solution obtained by ITS or PTS. Concerning the dynamic behavior, the same type
of convergence as that of CHESS can be seen in Figure 4.4, a rapid convergence in a
first phase and stagnation afterwards.

Concludingly, two groups of methods can be identified either generating narrow
or broad trade-off fronts. The methods SPEA, SPEA2 and CHESS can be assigned
to the first group, generating narrow trade-off fronts and the methods ISA, ITS, PSA
and PTS belongs to the second group, having broad trade-off fronts. A difference of
these two groups is the guidance to the Pareto-optimal front, the first group controls
the optimization process upon Pareto-dominance criteria, whereas the second group
uses a weight-based scalarization function. Thus, the methods of the first group can be
referred to as Pareto-based and the second as weight-based. Additionally, another dif-
ference between the two groups can be found, i.e., the Pareto-based methods converge
very fast in a first phase, where the weight-based methods show a slower convergence
velocity.

31

5. Combination of Methods

Results of chapter 4 have shown that the PTS method is able to generate broader fronts
than the multi-objective evolutionary algorithms SPEA and SPEA2. Thus, extremer
trade-offs could be generated by PTS. The question arises: Why are the trade-off
fronts obtained by multi-objective evolutionary algorithms under consideration nar-
rower? This question was tackled by modifying of methods and by performing further
computational experiments.

5.1. Neighborhood

First the neighborhood concept of tabu search was examined and compared with that
of evolutionary algorithms. The neighborhood concept describes the way how a de-
cision vector is modified in order to obtain a new solution. The tabu search neigh-
borhood concept consists of a neighborhood function which describes the modifica-
tion of a given decision vector and the neighborhood. The neighborhood denotes the
various neighboring solutions which are generated by the neighborhood function and
evaluated by the weighted sum in order to choose the “best” neighbor. Evolutionary
algorithms use mutation as a neighborhood function, where only one neighbor is con-
sidered. Mutation in contrary to the tabu search neighborhood function may produce
decision vectors representing knapsacks which exceed knapsack capacity constraints.
To approach the following questions, computational experiments have been performed
on the two objective knapsack problem:

• Can evolutionary algorithms be improved by using the tabu search neighborhood
function? Is the allowance of infeasible knapsacks a drawback for mutation? Is
there a deterioration of PTS when using mutation?

• Can an improvement of evolutionary algorithms be achieved by using a tabu
search neighborhood?

Computational experiments were made with modified versions of SPEA1 and PTS.
Methods were in a straight forward way combined since both source code bases could
be used. Mutation was replaced in SPEA by the tabu search neighborhood function,
the resulting method was called SPEA*. A version of ITS, denoted as PTSMUT, was
implemented where the common neighborhood function is used instead of mutation.
All neighbors resulting from mutation are repaired in order to obtain feasible knap-
sacks respecting the capacity constraints. The repairing mechanism of SPEA is used
(Zitzler and Thiele 1999)2. The repairing procedure checks every item to find out if

1SPEA was chosen for improvements because the source code was available.
2The description of the repairing mechanism given in this study differs slightly from (Zitzler and Thiele

1999), since that of (Zitzler and Thiele 1999) does not represent the implementation exactly.

32

5.1. Neighborhood

SPEA SPEA* SPEAN
Conf. 1

SPEAN
Conf. 2

SPEAN
Conf. 3

PTS PTSMUT

8· 108

8.2· 108

8.4· 108

8.6· 108

A
re

a

PTSMUT

PTS

SPEAN
Conf. 3

SPEAN
Conf. 2

SPEAN
Conf. 1

SPEA*

SPEA

(a) (b)

Figure 5.1.: Distributions of metric S and S values of the neighborhood experiments.

there is still enough space, stopping by the first item which exceeds a capacity con-
straint. The order in which the items are checked, is determined by the maximum
profit/weight ratio per item. The ratio qj for item j is defined by

qj =
k

max
i=1

{

pij

wij

}

. (5.1)

The items are considered in decreasing order of the qj , thus items achieving the high-
est profit per weight are checked first. In order to experiment on evolutionary algo-
rithms and neighborhood sizes, the tabu search neighborhood, using mutation as neigh-
borhood function, was introduced in SPEA, the obtained method is called SPEAN.
SPEAN evaluates the “best” neighbor by a weighted sum. The weights of every pop-
ulation member were initially set to random values.

Results are depicted in Figure 5.1. SPEA* shows an improvement over SPEA. The
tabu search neighborhood function improves the convergence to the Pareto-optimal
front, since a domination of 95% of SPEA* over SPEA is reported by metric C. The
bigger area (metric S) obtained by SPEA* can be ascribed to the better convergence
and a slightly broader trade-off front which could be seen by visual comparison of
two trade-off fronts (cf. Figure 5.2). Since the effect of different mutation rates is not
described in (Zitzler and Thiele 1999; Zitzler et al. 2001) and experiments on mu-
tation rates were out of the scope of this work, it cannot finally be said if the better
convergence is only corresponding to a more appropriate mutation rate. Interestingly,
PTSMUT shows equivalent results to PTS, almost no change can be seen by metric C
and S . It seems that the neighborhood of tabu search is able to compensate changes in
the neighborhood function to a certain degree, since no deterioration or improvement
can be observed. A disadvantage of mutation compared to the tabu search neighbor-
hood function cannot be found as the infeasible mutations do not play an important
role.

SPEAN has the same trade-off between the parameters population size, neigh-
borhood size and the number of iterations as the other neighborhood-based methods.

33

5. Combination of Methods

25000 26000 27000 28000 29000

26000

27000

28000

29000

SPEA SPEA* PTS

Figure 5.2.: Trade-off fronts for the two objective knapsack problem concerning SPEA
with the tabu search neighborhood function.

Because every member of the neighborhood must be evaluated by the objective func-
tion f , the total number of objective function f evaluations has to be shared among
these parameters. Several trade-off experiments by doubling and halving of parame-
ters were performed. The neighborhood size had to remain much smaller than of the
one used in PTS, because evolutionary algorithms need a bigger population than lo-
cal search based methods such as PTS. The elitist archive size was always set equal
to the population size. The following characteristic parameter configurations will be
presented here:

Configuration Population size Neighborhood size Iterations

SPEA 250 1 2000

1. 250 20 100
2. 60 20 416
3. 60 5 1666

The parameter configurations followed different ideas: Configuration 1 uses the neigh-
borhood in combination with the population size of SPEA, Configuration 2 uses a
smaller population, hence having more iterations and Configuration 3 uses a reduced
population with a reduced neighborhood, thus having even more iterations. Neither
of the parameter configurations could reach trade-off fronts as broad as that of PTS
(metric S). An improvement of the convergence compared to SPEA can be seen by
metric C for the configurations 2 and 3.

Above experiments show that the exchange of the neighborhood functions mainly
effects the convergence to the Pareto-optimal front and not the broadness of trade-off
fronts. The straight forward introduction of the tabu search neighborhood with a size
> 1 does not show a positive effect at all, thus it is not clear whether the combination
of the concepts of evolutionary algorithms and tabu search can have a favorable effect
with this problem.

34

5.2. Random Walk Phenomenon

f1

f2

a

b
0 375 750

0.005

0.015

0.025

(a) (b)

Figure 5.3.: Picture (a) shows the objective space of a simple two objective knapsack
problem. Picture (b) shows the binomial distribution for 750 item prob-
lem.

5.2. Random Walk Phenomenon

Experiments of section 5.1 could not explain or remedy narrow trade-off fronts of evo-
lutionary algorithms. Interestingly, results of chapter 4 show two groups of methods
either generating narrow or broad fronts. Narrow fronts are generated by the Pareto-
based methods SPEA, SPEA2 and CHESS. Pareto-based methods control the opti-
mization process upon Pareto-dominance criteria. Broad fronts are obtained by the
weight-based methods ITS, ISA, PSA and PTS which are steered by weights. This
observation leads to the question: Why are trade-off fronts of Pareto-based methods
narrower?

A difference between these two groups is the steering of the optimization pro-
cess. Directions of optimizations are recognizable by weight-based methods. A run
of a weight-based method maintains a specific optimization direction to a certain re-
gion of the Pareto-optimal front. On the other hand Pareto-based methods do not
seem to maintain optimization directions. New solutions are accepted if they are non-
dominated by previous solutions, beside other criteria. Such an acceptance may repre-
sent a random optimization direction. Assuming that a search direction can always be
determined and that a new accepted non-dominated solution has a random direction in
each iteration, then the narrowness of trade-off fronts can be explained by the random
walk phenomenon. Solutions perform a random walk in objective space whereas the
probability to find solutions at the “ends” of the trade-off fronts decreases.

The random walk phenomenon can be illustrated by a constructed two objective
knapsack example. There are two types of items which can be filled into a knapsack
of capacity c. Items of type I1 give a profit 1 in the first objective and 0 in the second.
Vice versa profits are obtained by items of type I2 having profit 0 in the first and 1
in the second objective. Each item has a weight of 1. There are c

2 items of type I1

and c
2 items of type I2. The objective space for a knapsack problem with capacity 6 is

35

5. Combination of Methods

SPEA SPEA2CHESS ITS1 ITSP ITSDIR PTS
7.6· 108

7.8· 108

8· 108

8.2· 108

8.4· 108

8.6· 108
A

re
a

PTS

ITSDIR

ITSP

ITS1

CHESS

SPEA2

SPEA

(a) (b)

Figure 5.4.: Distributions of metric S and C values concerning the random walk exper-
iments.

depicted on Figure 5.3 (a). A point in the figure represents a knapsack filled with items
I1 and I2 whereas the number of items I1 corresponds to the value achieved by f1 and
the number of items I2 correspond to f2, respectively. For example point “a” shown in
Figure 5.3 (a) contains 3 items I1 and 3 items I2 and point “b” contains 6 items I1. The
Pareto-optimal front can easily be found for this simple knapsack problem, i.e., those
knapsacks having the sum of the first and the second objective equal to the capacity,
f1 + f2 = c. In order to find the Pareto-optimal front, the following method is used:

1. Start from the empty knapsack.

2. Add randomly one item I1 or I2 to the knapsack repeatedly until the capacity is
reached.

Step 2 can be seen as a repetition of 1-bit mutations towards the Pareto-optimal front.
Figure 5.3 (a) shows that by using this method several search paths to point “a” exist
whereas point “b” can only be reached by one path. Since there are several ways to
knapsack “a”, this point is more probable than point “b” to be found by this method.
The number of paths to a point i on the Pareto-optimal front (consecutively numbered
from the top) in this constructed example is given by the number of combinations

(c
i

)

.
Thus, a probability function for each point on the Pareto-optimal front can be given, i.e.
the binomial distribution. The binomial distribution for an example with a knapsack
capacity of 750 is depicted in Figure 5.3 (b). This method is only able to find a very
narrow front, the most probable points, large parts of the Pareto-optimal front cannot
be found since the probability is almost 0. The random walk phenomenon can clearly
be seen.

The random walk phenomenon was also experimentally investigated using method
ITS on the two objective knapsack problem as presented in Section 4.1. Two ex-
periments without specific optimization directions were performed, in expectation of
showing the random walk phenomenon. First, random weight setting of ITS was mod-
ified so that a new random weight was set every iteration. The new method is re-

36

5.3. Weight-Based Multi-Objective Evolutionary Algorithm

ferred to as ITS1. Secondly, ITS was modified to accept a new current solution upon
Pareto-dominance. Instead of selecting the “best” solution of the neighborhood using
a weighted sum, a random non-dominated solution is chosen, where this solution must
be non-dominated by all other neighboring solutions. This method is called ITSP. Re-
sults, depicted in Figure 5.4, fulfill the expectations. Methods ITS1 and ITSP, both
without specific optimization directions, show the random walk phenomenon. Visual
comparisons of the generated non-dominated fronts showed narrow trade-off fronts.
Metric S reports the smallest values compared to all tested methods so far.

Concluding, it can be said, methods showing the random walk phenomenon are
not capable of generating broad trade-off fronts for the knapsack problem. Results
of the PTS method show that the random walk phenomenon can be overcome on the
multi-objective knapsack problem maintaining specific optimization directions. Opti-
mization directions seem to be important for the multi-objective knapsack problem in
order to find large trade-offs. Weights are a simple technique for expressing different
optimization directions. Weight-based scalarization of the multiple objectives using
different weights proved to be capable of maintaining specific optimization directions
on the knapsack problem. But it is questionable, if weight-based methods are capable
of finding as good trade-off fronts for problems with more irregular search spaces as
for the multi-objective knapsack problem, since the setting of appropriate weights for
problems having irregular, complex search spaces can be very difficult.

5.3. Weight-Based Multi-Objective Evolutionary
Algorithm

Since modifications of evolutionary algorithms reported in Section 5.1 are not able to
overcome the random walk phenomenon, investigations aiming to widen the trade-off
front were done. One obvious approach is to introduce weights in evolutionary algo-
rithms in analogy to PTS in order to obtain specific optimization directions. So far,
existing weight-based evolutionary algorithms do not maintain specific optimization
directions and thus show the random walk phenomenon, e.g. the algorithm of Hajela
and Lin (1992). The comparative case study of Zitzler and Thiele (1999) reports nar-
row trade-off fronts for the algorithm of Hajela and Lin (1992). The method of Hajela
and Lin (1992) encodes the weight vectors in the genotype and therefore these are
evolved and modified throughout the optimization process. Modifications on exist-
ing evolutionary algorithms and several experiments on the two objective knapsack
problem were considered in order to investigate the practicability of a weight-based
evolutionary algorithm maintaining specific optimization directions. A weight-based
evolutionary algorithm (WEA) was developed. WEA is an extension of the elitist
VEGA* (vector evaluated genetic algorithm) presented and discussed in Zitzler et al.
(2001). The principle of VEGA* was modified in order to enable specific optimiza-
tion directions. Two variants of a weight-based multi-objective evolutionary algorithm
(WEA), denoted as RWEA and AWEA were chosen for comparisons. RWEA uses
preset random weights, AWEA uses the adaptive weight setting Algorithm 6 of page
18 in order to determine optimization directions. Parameters for the computational ex-
periments were set corresponding to Chapter 4. The number of specific optimization
directions was set to 5 analogous to the 5 runs of PTS. Obtained results of RWEA and

37

5. Combination of Methods

VEGA*SOGA SPEA SPEA2 ITS RWEA PTS AWEA

7.8· 108

8· 108

8.2· 108

8.4· 108

8.6· 108

8.8· 108
A

re
a

AWEA

PTS

RWEA

ITS

SPEA2

SPEA

SOGA

VEGA*

(a) (b)

Figure 5.5.: Distributions of metric S and C values resulting from computational ex-
periments concerning the weight-based multi-objective evolutionary algo-
rithms.

AWEA, depicted in Figures 5.5 and 5.6 will be discussed first, the modifications and
the experiments which led to these variants will be discussed later.

Comparison

Results show that specific optimization directions can be maintained by evolutionary
algorithms using weighted sums, hence the random walk phenomenon does not appear
and broad trade-off fronts can be found. Moreover, AWEA achieves the biggest area
according to metric S , bigger than PTS, the best method of the comparison presented in
Section 4.2. Differences between AWEA and PTS can be found on visual inspections
of a trade-off fronts (cf. Figure 5.6). As opposed to PTS the weight-based evolutionary
algorithm does not show holes and regions resulting from separate optimization runs.
This fact can be attributed to the evolutionary algorithm search principle where no
separate runs are performed. The convergence to the Pareto-optimal front of AWEA is
mostly better than that of PTS, which is also confirmed by metric C. Almost 50% of
PTS are covered by AWEA. Corresponding to section 4.2, adaptive weight setting is
able to direct the optimization to the different regions of the Pareto-optimal front, thus
AWEA achieves a bigger area than RWEA, seen by metric S .

AWEA compared with the evolutionary algorithms VEGA*, SPEA and SPEA2
finds a significantly larger area (cf. Figure 5.5). But not an as good convergence to
the Pareto-optimal front as VEGA*, SPEA and SPEA2 is achieved (metric C), since
AWEA does not dominate any solutions found by VEGA*, SPEA and SPEA2, whereas
VEGA*, SPEA and SPEA2 cover about 25% of AWEA. Still a better convergence than
the PTS method can be stated, AWEA covers more than 30% of PTS; in addition, PTS
is covered by SPEA2 with more than 60% compared to the 25% of AWEA.

A comparison of WEA with a weight-based evolutionary reference algorithm also
maintaining optimization directions was made in order to verify the performance of

38

5.3. Weight-Based Multi-Objective Evolutionary Algorithm

25000 26000 27000 28000 29000 30000

24000

25000

26000

27000

28000

29000

30000

PTS AWEA SPEA2 VEGA* VEGA**

Figure 5.6.: Trade-off fronts for the two objective knapsack problem.

39

5. Combination of Methods

WEA. The reference algorithm called SOGA (single-objective genetic algorithm) is a
weight-based evolutionary algorithm, where the population is divided into subpopula-
tions at start-time. The subpopulations are independently optimized towards separate
regions of the Pareto-optimal front. For comparative tests, 5 subpopulations having
50 individuals were optimized. SOGA was started with random preset weights. Since
SOGA performs independent runs, it can be assigned to the class of independent runs
according to the classification of section 3.3. A comparison of SOGA must be made
with RWEA, because both methods are started with randomly preset weights. The
results, seen in Figure 5.5 show that SOGA is inferior to RWEA. SOGA achieves the
smallest area among the methods, hence, no broad trade-off fronts can be generated by
SOGA. The worst convergence is also achieved by SOGA, neither of the other fronts
can be covered by SOGA, whereas fronts of SOGA are dominated with more then
75%. Thus, performing one run of the multi-objective evolutionary algorithm WEA
and sharing information among the individuals is more effective than several indepen-
dent SOGA runs.

Modifications and Tests

Modifications which were tried out in order to obtain a weight-based evolutionary
algorithm are described here. Terms, notations and definitions for evolutionary algo-
rithms are used from (Zitzler et al. 2001). Our weight-based evolutionary algorithm
is an extension of the elitist VEGA* (vector evaluated genetic algorithm) presented
and discussed in Zitzler et al. (2001). The principle of VEGA* was modified in or-
der to enable specific optimization directions. Instead of switching objectives, true
weighted sums are used. The switching objectives of VEGA* represent a special case
of weighted sums, where only weight vectors of the identity matrix are used. In a
generation, d weighted sums are used. The mating pool is divided into d parts of equal
size; part i is filled with individuals that are chosen by tournament selection from the
current population according to the weighted sum i. In contrary to VEGA* the mating
pool is not shuffled. Crossover and mutation are performed as usual.

In order to obtain a weight-based evolutionary algorithm as good as possible, many
computational experiments were performed. First experiments were done with random
preset weight vectors using a binary tournament with d = 5. Trade-off fronts obtained
by this method proved to be even narrower than those of SPEA, obviously no specific
optimization directions could be maintained. In order to support directions, experi-
ments increasing the selection pressure were performed. Computational experiments
with tournament sizes of 2, 10, 20, 100 and 200 by a given population size of 250 were
done. Interestingly, the higher the tournament size the bigger area was achieved (met-
ric S). Therefore a tournament size of 200 was chosen for further experiments. WEA
with preset random weights and a tournament size of 200 gives the RWEA method
which is discussed above. A high selection pressure has a similar effect to the neigh-
borhood of tabu search. The mating pool is filled after tournament selection with a
few solutions appearing many times, these few solutions are mutated to many different
offsprings, similar to the current solutions of the different runs of the PTS method. The
effect of a high selection pressure can be seen in Figure 5.6 which shows a trade-off
front obtained by VEGA**. VEGA** is VEGA* with tournament size of 200 and

40

5.3. Weight-Based Multi-Objective Evolutionary Algorithm

without shuffle. A broad front can be seen as opposed to normal VEGA*, but with
mostly bad convergence due to only optimizing the objectives.

Adaptive weight setting in analogy to PTS was investigated using Algorithm 6.
Algorithm 6 calculates a weight vector λ for an individual x regarding the population
set Xt. In order to divide the mating pool in d parts, d weight vectors for the weighted
sums must be determined by Algorithm 6. Since d is much smaller than the population
size, d representatives have to be selected. Three types of representatives x were
considered:

• The representatives are chosen randomly from the population.

• The best individuals regarding the weighted sum using the previous weight vec-
tors are taken.

• The representatives are determined by clustering.

New representatives were chosen every iteration in the experiments. The cluster algo-
rithm of SPEA was used for clustering. Additionally, three types of sets Xt for weight
setting were considered:

i. The set of representatives themselves,

ii. the whole population, and

iii. the current non-dominated front of the population, whereas the representatives
are also chosen from this front.

Computational experiments for these variants, in total 9, were started. Experiments
considering clustering had to be dropped because the clustering algorithm of SPEA
was computationally to slow. WEA using the best weighted sum individuals as rep-
resentatives was not able to generate useful trade-off fronts, only the pure objectives
fi were optimized. However, adaptive WEA with random representatives was able to
generate broad trade-off fronts. The random representatives with the different sets Xt

achieved different results according to metric S , thus showing, that different directions
were taken. Areas for the three set Xt types are reported by metric S in the following
order: i, ii and iii, where the first achieved the largest area. Hence, the method AWEA
is equivalent to WEA with random representatives and set Xt type i.

The current version of the weight-based multi-objective evolutionary algorithm has
conceptual drawbacks:

• The high selection pressure is an abuse of the tournament size parameter intro-
ducing a neighborhood similar to that of the tabu search.

• Adaptive weight setting seems not to be optimal. The determination of repre-
sentatives is only a patch enabling the use of Algorithm 6. Moreover, random
determination of representatives for adaptive weight setting is probably not op-
timal.

Experiments avoiding such a high selection pressure were performed without success.
A method with binary tournament was tried out where the part i of the mating pool is

41

5. Combination of Methods

filled with the best individuals according to weighted sum i. A much smaller trade-off
front than that of AWEA was obtained.

Because of the convergence problems and the conceptual drawbacks, the methods
RWEA and AWEA can only show the practicability of overcoming the random walk
phenomenon for multi-objective evolutionary algorithms. Hence RWEA and AWEA
cannot be proposed as general methods for multi-objective problems.

42

6. Conclusions and Outlook

Conclusions

The goal of the present thesis was to find, classify and compare existing multi-objective
approaches, which form an alternative to multi-objective evolutionary algorithms. A
performance comparison based on the multi-objective 0/1 knapsack problem of alter-
native and multi-objective evolutionary algorithms was conducted and finally, poten-
tial improvements by combinations of optimization concepts were considered. In the
following list the key results of this thesis are summarized:

• Eight local search-based methods were found and divided into three classes.
All these local search based methods approximate the Pareto-optimal front by
performing several runs. The different ways in which each method handles the
runs were used as a classification criteria. The following three classes were
identified: independent runs, dependent parallel runs and dependent subsequent
runs.

• Computational experiments on multi-objective 0/1 knapsack problems showed
that the class of dependent parallel runs based on the tabu search, performing
adaptive weight setting, yielded the best results among the alternative methods.
The comparison between alternative methods and MOEAs showed that weight-
based local search methods could find broader trade-off fronts than the multi-
objective evolutionary algorithms. The Pareto-based methods under considera-
tion were only able to generate narrow trade-off fronts for the multi-objective 0/1
knapsack problem. MOEAs achieved a better convergence to the Pareto-optimal
front on the two objective knapsack problem than the alternative methods.

• The narrow trade-off fronts obtained by Pareto-based methods were ascribed to
the random walk phenomenon. The random walk phenomenon describes the
case where the trade-off solutions, which are currently improved by the method,
do not follow a specific optimization direction, but the solutions pursue a random
walk to the Pareto-optimal front. On a simple, constructed knapsack example,
it was shown that the probability to find boundary trade-offs was significantly
lower than the probability of solutions lying in the center of the trade-off front.
On the contrary, the weight-based methods did not show the random walk phe-
nomenon on the knapsack problem, due to using weights which directed the
optimization process to certain regions of the Pareto-optimal front. But it is not
clear if weight-based methods also perform better than Pareto-based methods
on other problems, which have more complex search spaces, since the setting of
appropriate weights can be very difficult.

43

6. Conclusions and Outlook

• Three kinds of combinations of methods were implemented and experimentally
tested, in order to overcome the random walk phenomenon. First, mutation and
the tabu search neighborhood function were exchanged in methods, secondly
the tabu search neighborhood was introduced into SPEA and thirdly an exper-
imental weight-based multi-objective evolutionary algorithm was constructed.
The first combination did not show any evident improvements or deteriorations
of trade-off fronts. The second combination did not yield better results either.
Finally, the weight-based multi-objective evolutionary algorithm showed that
MOEAs are also able to maintain specific optimization directions, overcoming
the random walk phenomenon. The weight-based multi-objective evolutionary
algorithm was able to find an as broad front as obtained by the alternative meth-
ods. However, the current weight-based multi-objective evolutionary algorithm
has convergence problems in the center of the trade-off front.

Concludingly it can be said that the experimental data gave no evidence that the
MOEAs could be better than other approaches for multi-objective problems. Nev-
ertheless, multi-objective evolutionary algorithms remain a promising approach for
multi-objective optimization problems due to their natural population-based structure.

Outlook

Based on this work, promising topics for future research may be:

• It would be of interest to pursue the random walk phenomenon that was identi-
fied during the analysis of Pareto-based methods. Methods avoiding the random
walk phenomenon would have to be developed. Since weight-based methods
performed well on the multi-objective knapsack problem, the development of a
general adaptive weight-based multi-objective evolutionary algorithm maintain-
ing specific optimization directions seems to be a promising approach. Inves-
tigations into Pareto-based methods, especially MOEAs, which overcome the
random walk phenomenon are needed.

• Since the MOEAs make a better usage of information available during the opti-
mization process such as density consideration of the archive than the alternative
methods, the alternative methods seem to have a potential for improvement by
using additional information available during the optimization process.

44

References

Borges, P. C. (2000). CHESS–Changing Horizon Efficient Set Search: A simple
principle for multiobjective optimization. Journal of Heuristics 6, 405–418.

Czyzak, P. and A. Jaszkiewicz (1997). The multiobjective metaheuristic approach
for optimization of complex manufacturing systems. In G. Fandel and T. Gal
(Eds.), Multiple Criteria Decision Making. Proceedings of the XIIth Interna-
tional Conference, Volume 448 of Lecture Notes in Economics and Mathemati-
cal Systems, Hagen, Germany, pp. 591–592. Springer.

Czyzak, P. and A. Jaszkiewicz (1998). Pareto Simulated Annealing—A metaheuris-
tic technique for multiple-objective cominatorial optimization. Journal of Mul-
ticriteria Decision Analysis 7, 34–47.

Deb, K. (2001). Multi-Objective Optimization Using Evolutionary Algorithms. John
Wiley & Sons.

Ehrgott, M. and X. Gandibleux (2000). An annotated bibliography of multi-
objective combinatorial optimization. OR Spektrum 22(4), 361–460.

Engrand, P. (1997). A multi-objective approach based on simulated annealing and
its application to nuclear fuel management. In Proceedings of the Fifth Interna-
tional Conference on Nuclear Engineering, Nice, France, pp. 416–423.

Fonseca, C. M. and P. J. Fleming (1995). An overview of evolutionary algorithms
in multiobjective optimization. Evolutionary Computation 3(1), 1–16.

Gandibleux, X., N. Mezdaoui, and A. Fréville (1997). A tabu search procedure
to solve multiobjective combinatorial optimization problems. In R. Caballero,
F. Ruiz, and R. Steuer (Eds.), Proceedings of the Second International Confer-
ence on Multi-Objective Programming and Goal Programming, Volume 455 of
Lecture Notes in Economics and Mathematical Systems, pp. 291–300. Springer.

Hajela, P. and C.-Y. Lin (1992). Genetic search strategies in multicriterion optimal
design. Structural Optimization 4, 99–107.

Hansen, M. P. (1997a). Experiments on the usage of hashing vectors in multiob-
jective tabu search. Paper presented at the NOAS ’97, Copenhagen, Denmark,
August 15–16 1997. URL: http://imm.dtu.dk/~mph/papers/.

Hansen, M. P. (1997b). Solving multiobjective knapsack problem using MOTS.
Paper presented at MIC 97, Sophia Antipolis, France, July 21–24 1997. URL:
http://imm.dtu.dk/~mph/papers/.

Hansen, M. P. (1997c). Tabu search for multiobjective optimization: MOTS. Paper
presented at the 13th MCDM Conference, Cape Town, South Africa, January
6–10 1997. URL: http://imm.dtu.dk/~mph/papers/.

45

REFERENCES

Hansen, M. P. (1998). Metaheuristics for multiple objective combinatorial opti-
mization. Ph. D. thesis, Institute of Mathematical Modelling, Technical Univer-
sity of Denmark, Lyngby Denmark. Report IMM-PHD-1998-45.

Hansen, M. P. (2000). Use of substitute scalarizing functions to guide a local search
based heuristic: The case of moTSP. Journal of Heuristics 6, 419–431.

Jaszkiewicz, A. (1997). A metaheuristic approach to multiple objective nurse
scheduling. Foundations of Computing and Decision Sciences 22(3), 169–184.

Sait, S. M. and H. Youssef (1999). Iterative Computer Algorithms with Applications
in Engineering. IEEE Computer Society Press.

Serafini, P. (1994). Simulated annealing for multi objective optimization problems.
In G. H. Tzeng (Ed.), Proceedings of the Tenth International Conference on
MCDM: Expand and Enrich the Domains of Thinking and Application, Taipei,
Taiwan, July 19–24 1992, pp. 283–292. Springer.

Steuer, R. E. (1986). Multiple Criteria Optimization: Theory, Computation, and
Application. John Wiley & Sons.

Suppapitnarm, A., K. A. Seffen, G. T. Parks, and P. J. Clarkson (2000). A sim-
ulated annealing algorithm for multiobjective optimization. Engineering Opti-
mization 33(1), 59–85.

Tuyttens, D., J. Teghem, P. Fortemps, and K. V. Nieuwenhuyze (2000). Perfor-
mance of the MOSA method for the bicriteria assignment problem. Journal of
Heuristics 6, 295–310.

Ulungu, E. L., J. Teghem, P. H. Fortemps, and D. Tuyttens (1999). MOSA method:
A tool for solving multiobjective combinatorial optimization problems. Journal
of Multi-Criteria Decision Analysis 8, 221–236.

Viana, A. and J. P. Sousa (2000). Using metaheuristics in multiple-objective re-
source constraint project scheduling. European Journal of Operational Re-
search 120, 359–374.

Zitzler, E. (1999). Evolutionary Algorithms for Multiobjective Optimizations:
Methods and Applications. Ph. D. thesis, Swiss Federal Institute of Technology
(ETH) Zurich, Switzerland. Shaker Verlag, Aachen, Germany, ISBN 3-8265-
6831-1.

Zitzler, E., K. Deb, and L. Thiele (2001). Comparison of multiobjective evolution-
ary algorithms: Empirical results. Evolutionary Computation 8(2), 173–195.

Zitzler, E., M. Laumanns, and L. Thiele (2001). SPEA2: Improving the strength
pareto evolutionary algorithm. Technical report, TIK-Report No. 103, Com-
puter Engineering and Networks Laboratory (TIK), Swiss Federal Institute of
Technology (ETH) Zurich, Gloriastrasse 35, CH-8092 Zurich. May, 2001.

Zitzler, E. and L. Thiele (1999). Multiobjective evolutionary algorithms: A com-
parative case study and the strength pareto approach. IEEE Transactions on
Evolutionary Computation 3(4), 257–271.

46

